Biophysics has century-old roots in the application of physical techniques, such as x-ray crystallography, nuclear magnetic resonance and high-resolution microscopy, to better understand biological structures. Fantastic progress in molecular biology over the last few decades has given birth to techniques that make it possible to address whole biological systems, which are both complex (with many variables) and dynamic (changing in time), with a powerful combination of quantitative measurement and mathematical modeling that is transforming biology into a physical science. Biophysics today is expanding to embrace this trend, and BMSE at UCSB is leading the way. BMSE Biophysics is quantitative bioscience at its best: spanning the spectrum from proteins to pathways to cells, tissues, organisms and even ecosystems, and pioneering new techniques in single-molecule measurement, biomimetic molecular assembly, automated image analysis, high-throughput computation and mathematical modeling.
Biophysics
Affiliated Faculty
The Carlini Group focuses on breaking down barriers between endogenous biochemical signals and exogenous soft materials for the fabrication of smart devices. We aim to revisit biomedical problems that remain shockingly unsolved, by integrating structurally dynamic polymers and biomaterials into autonomous sense-response-feedback platforms.
Biochemistry; protein structure and function relationships; protein dynamics; chemotaxis in bacteria.
Physical foundations of macromolecular technology: self-assembly, polymer mechanics and stability, energy transport, diffusion, and DNA-based nanotechnology.
The role of radicals in enzyme catalysis and degradation, development of electron bifurcating flavoproteins, and biogeochemical redox cycling of phosphorus.
RNA folding and evolution; nucleic acid-based bionanotechnology and biomaterials; emergence of complexity in living systems.
Optical methods for the study of single biological macromolecules; applications of microfluidic devices.
Combining theory and experimentation to understand how navigational decisions come about in terms of neural-circuit computation.
Bio-nano technology including molecular mechanisms controlling self assembly, emergent properties of biomolecular systems from minerals to dynamically tunable color in octopus skin; translation to revolutionary new routes to semiconductors, optoelectronics and energy.
The Mukherjee group will pursue fundamental advances at the intersection of molecular biology, biomedical imaging, and biophysics to discover and repurpose new classes of biomolecules into genetic reporters for studying cell function under low-oxygen conditions and inside deep tissues.
Soft condensed matter theory including biopolymer and biomembrane electrostatics, protein-membrane interactions, biopolymer solutions, and solution properties of conjugated polymers.
Enzymology of enzymes that modify nucleic acids, including bacterial and human epigenetic enzymes with biomedical relevance. Protein engineering, inhibitor design. Drug development. Nanoparticle-based delivery of siRNA, proteins, and drugs into cells (cancer/embryonic stem cell) and animals. Laser-dependent spatio-temporal control of drug targeting.
Structures and interactions in complex fluids and biological systems; new materials for gene delivery into mammalian cells.
The Saleh Group studies the physics of soft matter systems, with a focus on the active and passive micro-mechanics of biomolecules and polymers. These studies are pursued using modern instrumentation that permits insight into nanoscale structure and forces.
Bioelectronics, Single entity Biophysics, Nano-electrochemistry, Electron Transfer, Enzyme Catalysis
We use ideas and concepts from physics, computer science, and mathematics to ask how embryos get in shape, and how organs function. To answer our questions, we develop and use methods that enable quantitative analysis at the level of whole organs.
Design, synthesis, and characterization of new bioinorganic materials with an emphasis on understanding interface assembly & control of bioprocesses.
Ion channels in the nervous system and cardiac muscle; molecular mechanisms of ion channel trafficking, regulation, and signal transduction.